Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genomic data can provide valuable insights into the evolutionary history of rapidly diversifying groups and the genetic basis of phenotypic differences among lineages. We used whole-genome sequencing of the warbler genus Myioborus to investigate dynamics of its recent diversification in Neotropical mountains. We found that mitochondrial and UCE phylogenies are mostly, but not fully, concordant, and we found phylogenetic support for a pattern of north-to-south and low-to-high elevation colonization in the genus. Within the ornatus-melanocephalus complex, which showed topological incongruence between our phylogenies, we found that genetic structure generally coincides with geographic variation in plumage, although three subspecies with striking plumage differences exhibit low mitochondrial divergence. The hybridizing taxa M. o. chrysops and M. m. bairdi show very shallow genomic differentiation, with marked peaks of divergence. Most of these are shared with other parulid warbler pairs, pointing to broad genomic features, like recombination rate, as the processes shaping these regions. However, other highly differentiated regions were unique to Myioborus, including one containing the gene CCDC91, which is associated with melanin-based plumage differences in several other birds. Lastly, we found higher levels of differentiation on the Z chromosome relative to autosomes, including two putative chromosomal inversions. Together, these results highlight the interplay of deep ancestral divergence, recent hybridization, and shared genomic architecture in shaping the evolution of phenotypic and genomic diversity within Myioborus.more » « lessFree, publicly-accessible full text available August 15, 2026
-
Bachman’s warbler (Vermivora bachmanii)—last sighted in 1988—is one of the only North American passerines to recently go extinct. Given extensive ongoing hybridization of its two extant congeners—the bluewinged warbler (V. cyanoptera) and golden-winged warbler (V. chrysoptera)—and shared patterns of plumage variation between Bachman’s warbler and hybrids between those extant species, it has been suggested that Bachman’s warbler might have also had a component of hybrid ancestry. Here, we use historic DNA (hDNA) and whole genomes of Bachman’s warblers collected at the turn of the 20th century to address this. We combine these data with the two extant Vermivora species to examine patterns of population differentiation, inbreeding, and gene flow. In contrast to the admixture hypothesis, the genomic evidence is consistent with V. bachmanii having been a highly divergent, reproductively isolated species, with no evidence of introgression. We show that these three species have similar levels of runs of homozygosity (ROH), consistent with effects of a small long-term effective population size or population bottlenecks, with one V. bachmanii outlier showing numerous long ROH and a FROH greater than 5%. We also found—using population branch statistic estimates—previously undocumented evidence of lineage-specific evolution in V. chrysoptera near a pigmentation gene candidate, CORIN, which is a known modifier of ASIP, which is in turn involved in melanic throat and mask coloration in this family of birds. Together, these genomic results also highlight how natural history collections are such invaluable repositories of information about extant and extinct species.more » « less
An official website of the United States government
